职位名称
学历
专业
部门名称
职位代码
考试提醒 官方微博 在线做题 视频讲演
您的当前位置:国家公务员考试网 >> 行测辅导 >> 数量 >> 正文

2019国家公务员考试行测:速解不定方程

发布:2018-09-21 09:08:57 字号: | | 【 打印 】
   大家都知道,在公务员的行测考试当中,理科虽然占的题目不是很多,但是也是至关重要的,尤其是数量关系,大部分考生都选择放弃,如果这个时候你掌握了一些技巧,那么决定能否上岸,可能就是这么几道题目。那么,相信大家对于方程这个方法一定不陌生,可能也是大家面对理科的题目时候,优先想到的解法,而方程中,其实也有一类题目,相对来说比较复杂,那就是不定方程的题目,这类题目往往不能直接得出来x、y的值,而是要通过一定的方法,今天,国家公务员考试网就带着大家一起去学习一下快速解答这类题目的方法。
  1、含义
  在讲解方法之前,我们要知道什么叫做不定方程,其实很简单,就是未知数的个数大于独立方程的个数,这样的方程,我们叫做不定方程。这里需要解释一下,独立方程的含义,那就是不能通过其他方程线性组合得到的方程。
  比如:2x+3y=16和4x+6y=32,虽然是两个方程两个未知数,但是第二个方程是第一个等比例扩大2倍得到的,所以独立方程的个数其实只有一个,这两个其实是不定方程。
  2、解题方法
  1、整除特性
  例题:已知7x+6y+9z=66,求x=?
  A.3 B.4 C.5 D.7
  【参考解析】A。我们通过式子可以看出来,6y和9z以及66都可以被3整除,所以7x肯定也可以被3整除,7不能够被3整除,那么x一定能够被3整除,选择A。
  2、奇偶性
  例题:已知1982x-1981y=1983,求y=?
  A.2 B.3 C.4 D.6
  【参考解析】 B。通过式子可以看得出来1983是奇数,1982x是偶数,所以1981y一定是奇数,那么y一定是奇数,所以选择B选项。
  3、尾数法(系数有5或者5的倍数的时候,先考虑奇偶性,再考虑尾数)
  例题:已知12x+5y=99,x+y>10,求y-x=?
  【参考解析】 我们通过式子可以看出来,99是奇数,12x是偶数,所以5y一定是奇数,那么5y的尾数就是5,99的尾数是9,那么12x的尾数就是4。所以x=2或者7,对应y=15或者3,因为x+y>10,所以x=2,y=15。所求为15-2=13。
  4、质合性
  当题目中出现质数这样的字眼的时候,可以用质合性,仍旧是先考虑奇偶,然后再考虑质合性。突破口是2,2是唯一的一个偶质数。
  5、特值法
  当题目当中让我们求几个未知量的和的时候,可以采用这种方法,令其中的某个量为0或者其他的任意数字,这样可以将其变成一个普通方程组,就可以求得另外几个未知数的量,从而求得总量。
  3、例题精讲
  下面我们通过几道经典例题,来体会一下这类问题的解题方法。
  例1、某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数,后来由于学生人数减少,培训中心只保留了4名钢琴老师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?
  A.36 B.37 C.39 D.41
  【答案】D。
  【参考解析】根据题意设每名钢琴老师带x名学员,每名拉丁舞老师带y名学员,可列式5x+6y=76。因为76是偶数,6y也是偶数,所以5x肯定也是偶数,即x为偶数,题中说还是质数,所以x=2,代入求得y=11。故所求为2×4+3×11=41。所以答案选择D选项。
  例2、现木匠加工2张桌子和4张凳子共需要10小时,加工4张桌子和8张椅子需要22个小时,问如果他加工桌子、凳子和椅子各10张,共需要多少个小时?
  A.47.5 B.50 C.52.5 D.55
  【答案】C。
  【参考解析】如果设加工每张桌子、凳子、椅子分别需要x、y、z小时,则可根据题意列式2x+4y=10,4x+8z=22。令z=0,则x=5.5,y=-0.25。所求为(5.5-0.25)×10=52.5。答案选择C选项。
  做完这两道题目,是不是觉得不定方程的问题其实并没有那么难,小编家希望大家之后可以多加练习,熟练掌握这类题型的解决方法。最后祝大家考试顺利,成功上岸!