1.从1,2,3,……,30这30个数中,取出若干个数,使其中任意两个数的积都不能被4整除。问最多可取几个数? ( )
A.14个 B.15个 C.16个 D.17个
2.假设5个相异正整数的平均数是15,中位数是18,则此5个正整数中最大数的最大值可能为( )。
A.24 B.32 C.35 D.40
3.某连锁企业在10个城市共有100家专卖店,每个城市的专卖店数量都不同。如果专卖店数量排名第5多的城市有12家专卖店,那么专卖店数量排名最后的城市,最多有几家专卖店?
A.2 B.3 C.4 D.5
参考答案与解析:
1.C【解析】任意两个数之积不能被4整除,那么所取数中最多只能有一个偶数,且该偶数不能为4的倍数;共有15个奇数,所以最多可以取15+1=16个数。故正确答案为C。
2.C【解析】5个相异正整数的和为15×5=75,要使最大的数尽可能大,则其他数要尽可能小,因此中位数18之前的两个数分别为1、2,中位数后面一个数为19,则最大的数为75-1-2-18-19=35,故正确答案为C。
3.C【解析】为了让排名最后的城市专卖店尽量多,所以排名前五名的店的数量要尽量少,又由于“店的数量都不同“,所以前五名依次为16,15,14,13,12。这时占了70家店,还剩30家店分给后5名,为了让最后一名尽量多,采用尽可能均布的思想,后5名的店数分别为x+4, x+3, x+2, x+1, x,所以他们之和≦30,求解x=4