1.有一位百岁老人出生于二十世纪,2015年他的年龄各数字之和正好是他在2012年的年龄的各数字之和的三分之一,问该老人出生的年份各数字之和是多少(出生当年算作0岁)?
A.14
B.15
C.16
D.17
2.现需购买三种调料加工成一种新调料,三种调料价格分别为每千克20元、30元、60元。如果购买这三种调料所花钱一样多,则每千克调料的成本是:
A.30元
B.35元
C.40元
D.60元
3.某羽毛球赛共有23支队伍报名参赛,赛事安排23支队伍抽签两两争夺下一轮的出线权,没有抽到对手的队伍轮空,直接进入下一轮。那么,本次羽毛球赛最后共会遇到多少次轮空的情况:
A.1
B.2
C.3
D.4
参考答案与解析:
1.【解析】由题意可得2012年老人的年龄之和为3的倍数,则3年后即老人在2015年时年龄之和仍为3的倍数。又已知老人出生于二十世纪,则老人在2015年时的年龄<2015-1900=115岁(出生当年算作0岁)。取值试算,若老人2015年时114岁,则2012年111岁,不满足题意;若老人2015年时111岁,年龄各数字和为3,则2012年108岁,年龄各数字和为9,满足题意。得到2015-111=1904,即老人于1904年出生。
2.A【解析】赋值法。根据题意,设三种调料价格均为 60 元,那么 20 元 / 千克的调料的重量为 60÷20 = 3 千克;30 元 / 千克的调料的重量为 60÷30 = 2 千克;60 元 / 千克的调料的重量为 60÷60 = 1 千克;三种调料的总重量为 6 千克,总价格为 60×3 = 180 元,所以三种调料的每千克的成本:180÷6 = 30 元 / 千克。
3.B【解析】第一轮23支队伍需要轮空1次;第二轮12支队伍,不需要轮空;第三轮6支队伍,不需要轮空;第四轮3支队伍,需要轮空1次;最后是冠军争夺,不需要轮空。