1.A、B两地以一条公路相连。甲车从A地,乙车从B地以不同的速度沿公路匀速率相向开出。两车相遇后分别掉头,并以对方的速率行进。甲车返回A地后又一次掉头以同样的速率沿公路向B地开动。最后甲、乙两车同时到达B地。如果最开始时甲车的速率为X米/秒,则最开始时乙车的速率为( )。
A. 4X米/秒 B. 2X米/秒 C. 0.5X米/秒 D. 无法判断
2.有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是多少?
A.0 B.1 C.7 D.9
3.甲、乙、丙三名运动员囊括了全部比赛项目的前三名,他们的总分分别是8、7和17分,甲得了一个第一名,已知各个比赛项目分数相同,且第一名的得分不低于二、三名得分的和,那么比赛共有多少个项目?
A.3 B.4 C.5 D.6
参考答案与解析:
1.B【解析】显然最初乙的速度较快,由题意知,以甲车的速率走完了一遍全程,以乙车的速率走了两遍全程,所费时间相等,故乙车速度为甲车两倍。
2.D【解析】0+1+4+7+9=21能被3整除,从中去掉0或9选出的两组四个数字组成的四位数能被3整除。即有0、1、4、7或1、4、7、9两种选择组成四位数,由小到大排列为1047、1074、1407、1470、1479、1497……,所以第五个数的末位数字是9。
3.B【解析】全部比赛前三名的总分为8+7+17=32分,每个项目前三名的分数和至少是3+2+1=6分,所以每个项目前三名的分数和应该是32的大于6的约数,只能是8、16、32;如果是16或32,因为甲得了一个第一,所以甲的得分应大于8,不合题意,所以每个项目前三名的分数和是8分,共有项目32÷8=4个。