1.某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人:
A.36
B.37
C.39
D.41
2.某单位某月1—12日安排甲、乙、丙三个人值夜班,每人值班4天。三人各自值班期数字之和相等。已知甲头两天值夜班,乙9、10日值夜班,问丙在自己第一天与最后一天值夜班之间,最多有几天不用值夜班:
A.6
B.4
C.2
D.0
3.某路公交车单程共有10个车站,从始发站出发时,车上共有乘客20人,之后中间每站新上5人,且车上所有乘客最多坐3站下车。问最多会有多少名乘客在终点站下车:
A.20
B.10
C.5
D.15
参考答案与解析:
1.D【解析】设每个钢琴教师带x个学生,每个拉丁舞教师带y个学生,则根据题意可列式为:5x+6y=76。两个数的和为偶数,则这两个数同为偶数或者同为奇数,6y一定是偶数,因此5x一定是偶数,x必为偶数,而x与y均为质数,故x只能为2,代入原式可得y=11。则学生人数减少后,还剩下学员4×2+3×11=41个。
2.D【解析】由于连续的1—12日值班,同时又注意到“三人各自值班期数字之和相等”,所以已知甲值班在1日和2日,所以11日和12日也必须是他值班;同理,乙9日和10日值班,则3日和4日必须安排他值班。所以剩下的5、6、7、8日就只能让丙值班,既然丙连续值班,所以没有休息日。
3.D【解析】由题意,最初的20人在第4站都要下车;每一站新上的人都在3站后下车,那么只有第7站及以后的人才可能在终点站下车。也就是说最多有第7站、第8站、第9站的新上的人在终点站下车,因此最多有15人在终点站下车。