1.某机关20人参加百分制的普法考试,及格线为60分,20人的平均成绩为88分,及格率为95%。所有人得分均为整数,且彼此得分不同。问成绩排名第十的人最低考了多少分:
A.88
B.89
C.90
D.91
2.某种汉堡包每个成本4.5元,售价10.5元。当天卖不完的汉堡包即不再出售,在过去十天里,餐厅每天都会准备200个汉堡包,其中有六天正好卖完,四天各剩余25个。问这十天该餐厅卖汉堡包共赚了多少元?
A.10850
B.10950
C.11050
D.11350
3.一个立方体随意翻动,每次翻动朝上一面的颜色与翻动前都不同,那么这个立方体的颜色至少有几种:
A.3
B.4
C.5
D.6
参考答案与解析:
1.B【解析】要使第十名成绩尽可能的低,那么其他人应该尽可能的高,那么前九名应该分别为100、99、98、97、96、95、94、93、92分,而最后一名未及格,最多59分,此十人成绩之和为923,还剩837分。现要把这837分分给其余10个人,而在这10个人成绩排名第十的人成绩最高,要使其得分最低,则这10人的成绩应尽可能接近。易知此10人平均分为83.7,据此可构造79、80、81、82、83、84、85、86、88、89,因此成绩排名第十的人最低考了89分。
2.B【解析】考虑数字特性,卖出1个获利6元,未卖出赔4.5元,即总利润为3的倍数,观察选项只有B项满足。
3.A【解析】立方体 6 个面中,每次翻动都会出现相邻的任意面,所以相邻的不能用同一 种颜色,那么选 3 种颜色都在相对的面上填涂即可。也可以运用图形推理中的“相对面关 系法”得知,每次翻动都不能翻到对立面,因此对立面颜色可以相同。立方体有三组对立面,因此可以有三种颜色。