1.某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人:
A.36
B.37
C.39
D.41
2.甲、乙、丙、丁四个人分别住在宾馆1211、1213、1215、1217和1219这五间相邻的客房中的四间里,而另外一间客房空着。已知甲和乙两人的客房中间隔了其他两间客房,乙和丙的客房号之和是四个人里任意二人的房号和中最大的,丁的客房与甲相邻且不与乙、丙相邻。则以下哪间客房可能是空着的:
A.1213
B.1211
C.1219
D.1217
3.一公司销售部有4名区域销售经理,每人负责的区域数相同,每个区域都正好有两名销售经理负责,而任意两名销售经理负责的区域只有1个相同。问这4名销售经理总共负责多少个区域的业务:
A.12
B.8
C.6
D.4
参考答案与解析:
1.D【解析】设每个钢琴教师带x个学生,每个拉丁舞教师带y个学生,则根据题意可列式为:5x+6y=76。两个数的和为偶数,则这两个数同为偶数或者同为奇数,6y一定是偶数,因此5x一定是偶数,x必为偶数,而x与y均为质数,故x只能为2,代入原式可得y=11。则学生人数减少后,还剩下学员4×2+3×11=41个。
2.D【解析】代入排除验证即可,代入D项1217,若1217为空房,则甲和乙的房间可分别为1213、1219,此时丙、丁分别为1215和1211,满足要求。其余选项代入后均不满足要求。
3.C【解析】由题意,每个区域正好有两名销售经理负责,可知2个经理一组对应一个区域;而根据,任意两名销售经理负责的区域只有1个相同,可知2个经理一组仅对应一个区域。由此两条可知,区域数其实相当于从4个经理中任选2个有多少种组合,一种组合就对应一个区域,故共有6个区域。