1.甲、乙两名运动员在400米的环形跑道上练习跑步,甲出发1分钟后乙同向出发,乙出发2分钟后第一次追上甲,又过了8分钟,乙第二次追上甲,此时乙比甲多跑了250米,问两人出发地相隔多少米:
A.200
B.150
C.100
D.50
2.某政府机关内甲、乙两部门通过门户网站定期向社会发布消息,甲部门每隔两天、乙部门每隔3天有一个发布日,节假日无休。问甲、乙两部门在一个自然月内最多有几天同时为发布日?
A.5
B.2
C.6
D.3
3.某新建小区计划在小区主干道两侧种植银杏树和梧桐树绿化环境,一侧每隔3棵银杏树种一棵梧桐树,另一侧每隔4棵梧桐树种1棵银杏树,最终两侧各种植了35棵树,问最多栽种了多少棵银杏树?
A.33
B.34
C.36
D.37
参考答案与解析:
1.B【解析】直接分析,在两人第一次相遇到第二次相遇的过程中,乙追了甲一圈,乙比甲多跑了400米,但乙总共只比甲多跑250米,故在最开始的3分钟内甲比乙多跑400-250=150米,3分钟时甲、乙两人在同一位置,故开始时两人相距150米。
2.D【解析】甲部门每隔2天相当于每3天发布一次,乙部门每隔3天相当于每4天发布一次,3和4的最小公倍数是12,则甲、乙每3×4=12天就会同时发布一次。一个自然月最多有31天,假设甲、乙两部门1号同时发布一次,该自然月最多还有30天,30÷12=2...6,还可以共同发布两次。那么一个自然月最多共有3天是同时发布的。
3.B【解析】在满足两侧栽种要求的情况下,要使银杏树载种的最多,第一棵一定是种植银杏树,这一侧按照“银、银、银、梧……”循环,35÷4=8……3,共有8×3+3=27棵银杏树。另一侧按照“梧、梧、梧、梧、银……”循环,35÷5=7,共有7棵银杏树。因此两侧共栽种了27+7=34棵银杏树。