1.某政府机关内甲、乙两部门通过门户网站定期向社会发布消息,甲部门每隔两天、乙部门每隔3天有一个发布日,节假日无休。问甲、乙两部门在一个自然月内最多有几天同时为发布日?
A.5
B.2
C.6
D.3
2.一公司销售部有4名区域销售经理,每人负责的区域数相同,每个区域都正好有两名销售经理负责,而任意两名销售经理负责的区域只有1个相同。问这4名销售经理总共负责多少个区域的业务:
A.12
B.8
C.6
D.4
3.某新建小区计划在小区主干道两侧种植银杏树和梧桐树绿化环境,一侧每隔3棵银杏树种一棵梧桐树,另一侧每隔4棵梧桐树种1棵银杏树,最终两侧各种植了35棵树,问最多栽种了多少棵银杏树?
A.33
B.34
C.36
D.37
参考答案与解析:
1.D【解析】甲部门每隔2天相当于每3天发布一次,乙部门每隔3天相当于每4天发布一次,3和4的最小公倍数是12,则甲、乙每3×4=12天就会同时发布一次。一个自然月最多有31天,假设甲、乙两部门1号同时发布一次,该自然月最多还有30天,30÷12=2...6,还可以共同发布两次。那么一个自然月最多共有3天是同时发布的。
2.C【解析】由题意,每个区域正好有两名销售经理负责,可知2个经理一组对应一个区域;而根据,任意两名销售经理负责的区域只有1个相同,可知2个经理一组仅对应一个区域。由此两条可知,区域数其实相当于从4个经理中任选2个有多少种组合,一种组合就对应一个区域,故共有6个区域。
3.B【解析】在满足两侧栽种要求的情况下,要使银杏树载种的最多,第一棵一定是种植银杏树,这一侧按照“银、银、银、梧……”循环,35÷4=8……3,共有8×3+3=27棵银杏树。另一侧按照“梧、梧、梧、梧、银……”循环,35÷5=7,共有7棵银杏树。因此两侧共栽种了27+7=34棵银杏树。