1.把12棵同样的松树和6棵同样的柏树种植在道路两侧,每侧种植9棵,要求每侧的柏树数量相等且不相邻,且道路起点和终点处两侧种植的都必须是松树。问有多少种不同的种植方法:
A.36
B.50
C.100
D.400
2.有一位百岁老人出生于二十世纪,2015年他的年龄各数字之和正好是他在2012年的年龄的各数字之和的三分之一,问该老人出生的年份各数字之和是多少(出生当年算作0岁)?
A.14
B.15
C.16
D.17
3.小李的弟弟比小李小2岁,小王的哥哥比小王大2岁、比小李大5岁。1994年,小李的弟弟和小王的年龄之和为15。问2014年小李与小王的年龄分别为多少岁:
A.25,32
B.27,30
C.30,27
D.32,25
参考答案与解析:
1.C【解析】由题意,公路两边各6棵松树和3棵柏树,道路起点和终点处两侧种植的都必须是松树,那么中间有5个空,由于柏树要求互不相邻,故从5个空中选出3个空栽种柏树即可。故每一边的种植方式为C(3,5)=10,故总共不同的种植方式为10×10=100种。
2.A【解析】由题意可得2012年老人的年龄之和为3的倍数,则3年后即老人在2015年时年龄之和仍为3的倍数。又已知老人出生于二十世纪,则老人在2015年时的年龄<2015-1900=115岁(出生当年算作0岁)。取值试算,若老人2015年时114岁,则2012年111岁,不满足题意;若老人2015年时111岁,年龄各数字和为3,则2012年108岁,年龄各数字和为9,满足题意。得到2015-111=1904,即老人于1904年出生。
3.B【解析】根据题中已知条件“小王的哥哥比小王大2岁,比小李大5岁”可知,小王比小李大3岁,从选项可判断,只有B项符合。