1.以正方形的4个顶点和中心点中的任意三点为顶点可以构成几种面积不等的三角形:
A.1
B.2
C.3
D.4
2.有一批不同类型、不同牌号的汽车在江边等待轮渡,其中有轿车8辆,越野车5辆,大巴车2辆。已知渡轮中只有4个车位,且每辆轿车占用1个车位,每辆越野车占用2个车位,每辆大巴车占用4个车位。问至少需要几次轮渡(往返算一次)才能将这批汽车全部运完?
A.15
B.6
C.7
D.3
3.将25台笔记本电脑奖励给不同的单位,每个单位奖励的电脑数量均不等,最多可以奖励几个单位:
A.5
B.6
C.7
D.8
参考答案与解析:
1.B【解析】总共两类三角形:第一类是由正方形中心和相邻两个顶点构成,第二类是由正方形相邻三个顶点构成,因此可以构成2种面积不等的三角形。
2.C【解析】按照每种汽车占用的车位,每次运送都能够保证轮渡中无空位。故所需总车位=8×1+5×2+2×4=26个,需要26÷4=6次余2,故至少需要7次才能全部运完。
3.B【解析】从1台开始算起,1+2+3+4+5+6=21,还多4台,不能再单独奖励给一个单位,只能分到后4个单位,因此最多可以奖励6个单位。