1.把1~200这200个自然数中,既不是3的倍数,又不是5的倍数,从小到大排成一排,那么第100个是几?( )
A. 193 B. 187 C. 123 D. 40
2.152个球,放入若干个同样的箱子中,一个箱子最少放10个,最多放20个,且各个箱子的球数均不相同,问有多少种放法?(不计箱子的排列,即两种放法,经过箱子的重新排列后,是一样的,就算一种放法)
A. 1 B. 7 C. 12 D. 24
3. 50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,…依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?
A. 30 B. 34 C. 36 D. 38
参考答案与解析:
1.B【解析】 从1至200的自然数中是3的倍数的数有66个,是5的倍数的数有40个,而既是3又是5的倍数的数有13个。所以从1至200的自然数中是3或5的倍数的数有(66+40-13)=93个,所以从1至200的这200个自然数中,既不是3又不是5的倍数的数有(200-93)=107个。现在要求第100个,即倒数第8个。将它从大到小列出:199、197、196、194、193、191、188、187……即从小到大排列第100个是187。故本题选B。
2.A【解析】 设箱子个数为m,因为每只箱子的球数均不相同,最少放10个,最多放20个,所以m≤20-10+1=11。如果m=11,那么球的总数≥10×11+(0+1+2+…+10)=110+55>152,所以m≤10。如果m≤9,那么球的总数≤10×9+(10+9+8+…+2)=90+54=144<152,所以m=10。在m=10时,10×10+(10+9+…+1)=155=152+3,所以一个箱子放10个球,其余箱子分别放11,12,14,15,16,17,18,19,20个球,总数恰好为152,而且符合要求的放法也只有这一种。故本题正确答案为A。
3.D【解析】第一次报4的倍数的12名同学向后转后,在报6的倍数的8名同学中,面向老师和背向老师的各4名。分析如下:报4的倍数的同学分别报4,8,12,16,20,24,28,…,48;报6的倍数的同学分别报6,12,18,24,30,…,48;第二次报6的倍数的同学中有4名同学的报数与第一次报4的倍数的同学相同,故两次报数结束后,先前4名背向老师的同学又面向老师,另外4名同学则背向老师。故可推出,背向老师的同学有12名,面向老师的同学有38名。因此,本题正确答案为D。